
Performance Performance
Programming with IBM Programming with IBM

pSeries CompilerspSeries Compilers

October 9, 2001
Bob Blainey

blainey@ca.ibm.com

Agenda

Review of the pSeries compiler products
C for AIX, Version 5.0
VisualAge for C++ for AIX, Version 5.0
XL Fortran for AIX, Version 7.1

Tutorial on performance controls
Performance compiler options
Directives and pragmas

Programming for performance
A peek inside the compiler
A close look at Power 4 optimization
Q&A

IBM Compiler Products for pSeries

Latest versions
C for AIX, Version 5.0.2.0
VisualAge C++ Professional for AIX, Version
5.0.2.0
XL Fortran for AIX, Version 7.1.0.2

Older, supported versions
XL High Performance Fortran for AIX, Version 1.4
(until 12/01)
VisualAge C++ Professional for AIX, Version 4.0
(until 12/02)

XL Fortran version 7.1
Fortran 77/90/95 compiler with many extensions
32 and 64 bit support for serial and SMP
OpenMP 1.0 support (OpenMP 2.0 coming ...)
Support for TotalView, xldb, IBM distributed
debugger and dbx/pdbx
Snapshot directive for debugging optimized code
Portfolio of optimizing transformations

Comprehensive path length reduction
Whole program analysis
Loop optimization for parallelism, locality and
instruction scheduling
Tuned support for all RS/6000 and pSeries
processors

More info: www.software.ibm.com/ad/fortran

C for AIX version 5.0
ANSI C89 compliant compiler (C99 coming soon)
32 and 64 bit support for serial and SMP
Full support for OpenMP 1.0 (participating in
OpenMP 2.0 definition)
Support for TotalView, xldb, IBM distributed
debugger and dbx/pdbx
Snapshot directive for debugging optimized code
Runtime memory debug support
Portfolio of optimizing transformations

Similar to Fortran support but includes tuned
optimizations for C pointers and systems coding
styles

More info: www.software.ibm.com/ad/caix

VisualAge for C++ for AIX version 5.0

Fully compliant ANSI98 C++ compiler
32 and 64 bit support
Batch compiler for traditional build environments and
maximal optimization
Incremental compiler for rapid application development (to be
phased out in next release)
Integrated graphical development environment including
remote debug and performance visualization
Support for TotalView, xldb, IBM distributed debugger and
dbx/pdbx
Portfolio of optimizing transformations

Subset of transformations available in Fortran and C but
has tuned support for all processors
Much more coming soon

More info: www.software.ibm.com/ad/vacpp

Performance Compiler Options

Optimization level
High order transformations
Interprocedural analysis
Profile directed feedback
Target machine specification
Floating point options
Program behaviour
Diagnostic options

Optimization Level

OPTIMIZE: specified as -qoptimize=n or -On where n is
one of:

0: Fast compilation, full support for debugging
2: Comprehensive low-level optimization, partial support
for debugging (procedure boundaries)
3: Even more optimization - compile time/space intensive
and/or marginal effectiveness
4: Macro option including -O3, -qhot, -qipa, -qarch=auto,
-qtune=auto, -qcache=auto
5: Macro option including -O4, -qipa=level=2

Optimization Options (continued)

Examples of optimizations done at -O or -O2
Global assignment of user variables to registers
Effective usage of addressing modes (eg. update)
Elimination of unused or redundant code
Movement of invariant code out of loops
Scheduling of instructions for the target machine
Some loop unrolling and scheduling

Examples of optimizations done at -O3
Deeper inner loop unrolling
Better loop scheduling
Additional optimizations allowed by -qnostrict
Widened optimization scope (typically whole procedure)
No implicit memory usage limits (-qmaxmem=-1)

Example: Matrix Multiply

DO I = 1, N1
 DO J = 1, N3
 Z(I,J) = 0.0
 DO K = 1, N2
 Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)
 END DO
 END DO
END DO

Matrix multiply with no optimization
 13| CL.4:
 14| 000180 lwz 809F0000 1 L4A gr4=i(gr31,0)
 14| 000184 lwz 807F0004 0 L4A gr3=j(gr31,4)
 14| 000188 addi 3903FFFF 2 AI gr8=gr3,-1
 14| 00018C lwz 80BF0024 0 L4A gr5=#13(gr31,36)
 14| 000190 lwz 806100A0 1 L4A gr3=.z(gr1,160)
 14| 000194 rlwinm 54841838 0 SLL4 gr4=gr4,3
 14| 000198 mullw 7CA829D6 2 M gr5=gr8,gr5,mq"
 14| 00019C add 7CC42A14 1 A gr6=gr4,gr5
 14| 0001A0 add 7CC33214 0 A gr6=gr3,gr6
 14| 0001A4 lfd C826FFF8 1 LFL fp1=z(gr6,-8)
 14| 0001A8 lwz 80FF0008 0 L4A gr7=k(gr31,8)
 14| 0001AC addi 3927FFFF 2 AI gr9=gr7,-1
 14| 0001B0 lwz 815F000C 0 L4A gr10=#7(gr31,12)
 14| 0001B4 lwz 80C10098 1 L4A gr6=.x(gr1,152)
 14| 0001B8 mullw 7D2951D6 2 M gr9=gr9,gr10,mq"
 14| 0001BC add 7D244A14 1 A gr9=gr4,gr9
 14| 0001C0 add 7CC64A14 0 A gr6=gr6,gr9
 14| 0001C4 lfd C846FFF8 1 LFL fp2=x(gr6,-8)
 14| 0001C8 lwz 813F0018 0 L4A gr9=#10(gr31,24)
 14| 0001CC lwz 80C1009C 1 L4A gr6=.y(gr1,156)
 14| 0001D0 rlwinm 54E71838 0 SLL4 gr7=gr7,3
 14| 0001D4 mullw 7D0849D6 2 M gr8=gr8,gr9,mq"
 14| 0001D8 add 7CE74214 1 A gr7=gr7,gr8
 14| 0001DC add 7CC63A14 0 A gr6=gr6,gr7
 14| 0001E0 lfd C866FFF8 1 LFL fp3=y(gr6,-8)
 14| 0001E4 fmadd FC2208FA 1 FMA fp1=fp1-fp3,fcr
 14| 0001E8 add 7C842A14 0 A gr4=gr4,gr5
 14| 0001EC add 7C632214 0 A gr3=gr3,gr4
 14| 0001F0 stfd D823FFF8 0 STFL z(gr3,-8)=fp1
 15| 0001F4 lwz 807F0008 1 L4A gr3=k(gr31,8)
 15| 0001F8 addi 38630001 2 AI gr3=gr3,1
 15| 0001FC stw 907F0008 1 ST4A k(gr31,8)=gr3
 15| 000200 lwz 80610070 0 L4A gr3=#21(gr1,112)
 15| 000204 addic. 3463FFFF 2 AI_R gr3=gr3,-1
 15| 000208 stw 90610070 0 ST4A #21(gr1,112)=gr3
 15| 00020C bc 4181FF74 1 BT CL.4,cr0,0x2/gt ,

Matrix multiply with -O2

 14| 000094 lfd C83F0008 1 LFL fp1=y(gr31,8)
 14| 000098 lfdux 7C5E3CEE 1 LFDU fp2,gr30=x(gr30,gr7,0)
 14| 00009C lfd C87F0010 1 LFL fp3=y(gr31,16)
 14| 0000A0 lfdux 7C9E3CEE 1 LFDU fp4,gr30=x(gr30,gr7,0)
 14| 0000A4 lfd C8BF0018 1 LFL fp5=y(gr31,24)
 14| 0000A8 lfdux 7CDE3CEE 1 LFDU fp6,gr30=x(gr30,gr7,0)
 14| 0000AC lfdu CD1F0020 1 LFDU fp8,gr31=y(gr31,32)
 0| 0000B0 bc 43400038 0 BCF ctr=CL.101,taken=0%(0,100)
 13| CL.4:
 14| 0000B4 fmadd FCE0387A 1 FMA fp7=fp7,fp0,fp1,fcr
 14| 0000B8 lfdux 7C1E3CEE 1 LFDU fp0,gr30=x(gr30,gr7,0)
 14| 0000BC lfd C83F0008 1 LFL fp1=y(gr31,8)
 14| 0000C0 fmadd FCE238FA 2 FMA fp7=fp7,fp2,fp3,fcr
 14| 0000C4 lfdux 7C5E3CEE 0 LFDU fp2,gr30=x(gr30,gr7,0)
 14| 0000C8 lfd C87F0010 1 LFL fp3=y(gr31,16)
 14| 0000CC fmadd FCE4397A 3 FMA fp7=fp7,fp4,fp5,fcr
 14| 0000D0 lfdux 7C9E3CEE 0 LFDU fp4,gr30=x(gr30,gr7,0)
 14| 0000D4 lfd C8BF0018 0 LFL fp5=y(gr31,24)
 14| 0000D8 fmadd FCE63A3A 4 FMA fp7=fp7,fp6,fp8,fcr
 14| 0000DC lfdu CD1F0020 0 LFDU fp8,gr31=y(gr31,32)
 14| 0000E0 lfdux 7CDE3CEE 0 LFDU fp6,gr30=x(gr30,gr7,0)

 0| 0000E4 bc 4320FFD0 0 BCT ctr=CL.4,taken=100%(100,0)
 0| CL.101:
 14| 0000E8 fmadd FC00387A 1 FMA fp0=fp7,fp0,fp1,fcr
 14| 0000EC fmadd FC0200FA 4 FMA fp0=fp0,fp2,fp3,fcr
 14| 0000F0 fmadd FC04017A 4 FMA fp0=fp0,fp4,fp5,fcr
 14| 0000F4 fmadd FCE6023A 4 FMA fp7=fp0,fp6,fp8,fcr

Matrix multiply with -O3
 14| 00009C lfdux 7C3E3CEE 1 LFDU fp1,gr30=x(gr30,gr7,0)
 14| 0000A0 lfdux 7C5E3CEE 1 LFDU fp2,gr30=x(gr30,gr7,0)
 14| 0000A4 lfd C87F0008 1 LFL fp3=y(gr31,8)
 14| 0000A8 lfd C89F0010 1 LFL fp4=y(gr31,16)
 0| 0000AC lfs C0FD0000 1 LFS fp7=+CONSTANT_AREA(gr29,0)
 14| 0000B0 lfdux 7CBE3CEE 1 LFDU fp5,gr30=x(gr30,gr7,0)
 14| 0000B4 lfd C8DF0018 1 LFL fp6=y(gr31,24)
 0| 0000B8 fmr FD003890 1 LRFL fp8=fp7
 0| 0000BC fmr FD603890 1 LRFL fp11=fp7
 0| 0000C0 bc 43400038 0 BCF ctr=CL.110,taken=0%(0,100)
 13| CL.4:
 14| 0000C4 fmadd FC0100FA 1 FMA fp0=fp0,fp1,fp3,fcr
 14| 0000C8 lfdux 7D3E3CEE 1 LFDU fp9,gr30=x(gr30,gr7,0)
 14| 0000CC fmadd FCE2393A 1 FMA fp7=fp7,fp2,fp4,fcr
 14| 0000D0 lfdu CD5F0020 1 LFDU fp10,gr31=y(gr31,32)
 14| 0000D4 fmadd FD0541BA 1 FMA fp8=fp8,fp5,fp6,fcr
 14| 0000D8 lfdux 7C3E3CEE 1 LFDU fp1,gr30=x(gr30,gr7,0)
 14| 0000DC lfd C87F0008 1 LFL fp3=y(gr31,8)
 14| 0000E0 lfdux 7C5E3CEE 1 LFDU fp2,gr30=x(gr30,gr7,0)
 14| 0000E4 lfd C89F0010 1 LFL fp4=y(gr31,16)
 14| 0000E8 fmadd FD695ABA 1 FMA fp11=fp11,fp9,fp10,fcr
 14| 0000EC lfdux 7CBE3CEE 1 LFDU fp5,gr30=x(gr30,gr7,0)
 14| 0000F0 lfd C8DF0018 1 LFL fp6=y(gr31,24)
 0| 0000F4 bc 4320FFD0 0 BCT ctr=CL.4,taken=100%(100,0)
 0| CL.110:
 14| 0000F8 fmadd FC0100FA 1 FMA fp0=fp0,fp1,fp3,fcr
 14| 0000FC lfdu CC3F0020 1 LFDU fp1,gr31=y(gr31,32)
 14| 000100 fmadd FC42393A 1 FMA fp2=fp7,fp2,fp4,fcr
 14| 000104 lfdux 7C7E3CEE 1 LFDU fp3,gr30=x(gr30,gr7,0)
 14| 000108 fmadd FC8541BA 1 FMA fp4=fp8,fp5,fp6,fcr
 14| 00010C fmadd FC23587A 1 FMA fp1=fp11,fp3,fp1,fcr
 0| 000110 fadd FC00102A 1 AFL fp0=fp0,fp2,fcr
 0| 000114 fadd FC24082A 3 AFL fp1=fp4,fp1,fcr
 0| 000118 fadd FC00082A 4 AFL fp0=fp0,fp1,fcr

Tips for getting the most out of -O2/3
If possible, test and debug your code without optimization
before using -O2 or -O3
Ensure that your code is standard-compliant. Optimizers are
the ultimate conformance test!

In Fortran code, ensure that subroutine parameters
comply with aliasing rules
In C code, ensure that pointer use follows type restrictions
Ensure all shared variables are marked volatile

Compile as much of your code as possible with -O2.
If you encounter problems with -O2, consider using
-qalias=noansi or -qalias=nostd rather that turning off
optimization.
Next, use -O3 on as much code as possible.
If you encounter problems or degradations, consider using
-qstrict or -qcompact along with -O3 where necessary.
If you still have problems with -O3, switch to -O2 for a subset
of files/subroutines but consider using -qmaxmem=-1 and/or
-qnostrict.

Optimization Options (continued)

HOT (High Order Transformations) - Fortran (C and C++
coming soon)

Specified as -qhot[=[no]vector | arraypad[=n]]
Optimized handling of F90 array language constructs
(elimination of temporaries, fusion of statements)
High level transformation (eg. interchange) of loop nests
to improve memory locality (reduce cache/TLB misses),
optimize usage of hardware prefetch and balance loop
computation (typically ld/st vs. float)
Optionally transforms loops to exploit vector intrinsic
library (eg. reciprocal, sqrt, trig) - may result in slightly
different rounding
Optionally introduces array padding under user control -
potentially unsafe if not applied uniformly

Matrix multiply with -O3 -qhot
 13| CL.4:
 14| 0001C8 fmadd FC0200FA 1 FMA fp0=fp0,fp2,fp3,fcr
 14| 0001CC lfdux 7FDA34EE 1 LFDU fp30,gr26=x(gr26,gr6,0)
 14| 0001D0 fmadd FF42D1FA 1 FMA fp26=fp26,fp2,fp7,fcr
 14| 0001D4 lfdu CFF80010 1 LFDU fp31,gr24=y(gr24,16)
 14| 0001D8 fmadd FF64D9FA 1 FMA fp27=fp27,fp4,fp7,fcr
 14| 0001DC lfdu CFB90010 1 LFDU fp29,gr25=y(gr25,16)
 14| 0001E0 fmadd FC23093A 1 FMA fp1=fp1,fp3,fp4,fcr
 14| 0001E4 lfd CB9A0008 1 LFL fp28=x(gr26,8)
 14| 0001E8 lfd C8780008 1 LFL fp3=y(gr24,8)
 14| 0001EC lfdux 7C5A34EE 1 LFDU fp2,gr26=x(gr26,gr6,0)
 14| 0001F0 lfd C89A0008 1 LFL fp4=x(gr26,8)
 14| 0001F4 lfd C8F90008 1 LFL fp7=y(gr25,8)
 14| 0001F8 fmadd FF45D27A 1 FMA fp26=fp26,fp5,fp9,fcr
 14| 0001FC fmadd FC0501BA 1 FMA fp0=fp0,fp5,fp6,fcr
 14| 000200 lfdux 7CBA34EE 1 LFDU fp5,gr26=x(gr26,gr6,0)
 14| 000204 fmadd FC260A3A 1 FMA fp1=fp1,fp6,fp8,fcr
 14| 000208 lfdu CCD80010 1 LFDU fp6,gr24=y(gr24,16)
 14| 00020C fmadd FF68DA7A 1 FMA fp27=fp27,fp8,fp9,fcr
 14| 000210 lfdu CD390010 1 LFDU fp9,gr25=y(gr25,16)
 14| 000214 lfd C91A0008 1 LFL fp8=x(gr26,8)
 14| 000218 fmadd FC0B02BA 1 FMA fp0=fp0,fp11,fp10,fcr
 14| 00021C fmadd FF4BD37A 1 FMA fp26=fp26,fp11,fp13,fcr
 14| 000220 lfdux 7D7A34EE 1 LFDU fp11,gr26=x(gr26,gr6,0)
 14| 000224 fmadd FF6CDB7A 1 FMA fp27=fp27,fp12,fp13,fcr
 14| 000228 lfd C9B90008 1 LFL fp13=y(gr25,8)
 14| 00022C fmadd FC2A0B3A 1 FMA fp1=fp1,fp10,fp12,fcr
 14| 000230 lfd C9580008 1 LFL fp10=y(gr24,8)
 14| 000234 lfd C99A0008 1 LFL fp12=x(gr26,8)
 14| 000238 fmadd FF5ED77A 1 FMA fp26=fp26,fp30,fp29,fcr
 14| 00023C fmadd FC1E07FA 1 FMA fp0=fp0,fp30,fp31,fcr
 14| 000240 fmadd FC3F0F3A 1 FMA fp1=fp1,fp31,fp28,fcr
 14| 000244 fmadd FF7CDF7A 1 FMA fp27=fp27-fp29,fcr
 0| 000248 bc 4320FF80 0 BCT ctr=CL.4,taken=100%(100,0)

Vectorization Example
 SUBROUTINE VD(A,B,C,N)
 REAL*8 A(N),B(N),C(N)
 DO I = 1, N
 A(I) = C(I) / SQRT(B(I))
 END DO
 END

 SUBROUTINE vd (a, b, c, n)
 @ICM0 = n
 3| IF ((@ICM0 > 0)) THEN
 4| @NumElements0 = int(int(@ICM0))
 CALL __vrsqrt_630((a + (-8) + (8)*(1)),(b + (-8) + (8)*(1)),
 & @NumElements0)
 3| @CIV0 = 0
 Id=3 DO @CIV0 = @CIV0, int(@ICM0)-1
 4| a((@CIV0 + 1)) = c((@CIV0 + 1)) * a((@CIV0 + 1))
 5| ENDDO
 ENDIF
 6| RETURN
 END SUBROUTINE vd

Tips for getting the most out of -qhot

Try using -qhot along with -O2 or -O3 for all of your code. It
is designed to have neutral effect when no opportunities
exist.
If you encounter unacceptably long compile times (this can
happen with complex loop nests) or if your performance
degrades with the use of -qhot, try using -qhot=novector, or
-qstrict or -qcompact along with -qhot.
If possible, report long compile times or poor generated code
to IBM through your service representative. If that doesn't
work, feel free to contact me.
If necessary, deactivate -qhot selectively, allowing it to
improve some of your code.
Read the transformation report generated using -qreport
(Fortran only for now). If your hot loops are not transformed
as you expect, try using assertive directives such as
INDEPENDENT or CNCALL or prescriptive directives such
as UNROLL or PREFETCH.

Optimization Options (continued)

IPA (Inter-Procedural Analysis) - Fortran and C (C++
coming soon)

Specified as -qipa[=level=n | inline= | fine tuning] on both
compile and link steps
Expand the scope of optimization to an entire program
unit (executable or shared object)
level=0: Program partitioning and simple interprocedural
optimization
level=1: Inlining and global data mapping
level=2: Global alias analysis, specialization,
interprocedural data flow
inline=: Precise user control of inlining
fine tuning: Specify library code behaviour, tune program
partitioning, read commands from a file

IPA in depth
level=0

automatic recognition of standard libraries
localization of statically bound variables and procedures
partitioning and layout of code according to call affinity

expansion of backend optimizer scope
level=1

procedure inlining
partitioning and layout of static data according to
reference affinity

level=2
whole program alias analysis
aggressive intraprocedural optimizations

value numbering, code propagation and simplification,
code motion (into conditions, out of loops), redundancy
elimination

interprocedural constant propagation, dead code
elimination, pointer analysis
procedure specialization (cloning)

Tips for getting the most from -qipa

When specifying optimization options in a makefile,
remember to repeat all options on the link step

OPT = -O3 -qipa
FFLAGS=...$(OPT)...
LDFLAGS=...$(OPT)...

-qipa works when building executables or shared objects but
always compile 'main' and exports with -qipa.
It is not necessary to compile everything with -qipa but try to
apply it to as much of your program as possible.
When compiling and linking separately, use -qipa=noobject
on the compile step for faster compilation.
Ensure there is enough space in /tmp (at least 200MB) or
use the TMP_DIR variable to specify a different directory.
The "level" suboption is a throttle. Try varying the "level"
suboption if compilation time is too long. -qipa=level=0 can
be very beneficial for little cost.
Look at the generated code. If too few or too many functions
are inlined, consider using -qipa=[no]inline

Optimization Options (continued)
PDF (Profile-Directed Feedback): specified as -qpdf1 and -qpdf2

-qpdf1 causes the resulting object to be instrumented for the
collection of program control flow data
-qpdf2 causes the compiler to consume previously collected data
for the purpose of path-biased optimization

code layout, scheduling, register allocation
(in XLF 7.1.1, C/C++ V6) inlining decisions, partially invariant
code motion, switch code generation, loop optimizations

Three step process:
Compile/link with -qpdf1
Run program through sample data
Compile/link with -qpdf2

(in XLF 7.1.1, C/C++ V6) only need to relink with -qpdf2.
PDF should be used mainly on code which has rarely executed
conditional error handling or instrumentation
PDF usually has a neutral effect in the absence of firm profile
information (ie. when sample data is inconclusive)
However, always use characteristic data for profiling. If sufficient
data is unavailable, do not use PDF.

Optimization Options (continued)

COMPACT: specified as -q[no]compact
Prefers final code size reduction over execution
time performance when a choice is necessary

INLINE: specified as -Q[+names | -names | !]
Controls inlining of named functions - usable at
compile time and/or link time

UNROLL: specified as -q[no]unroll
Independently controls loop unrolling (implicitly
activated under -O2 and -O3)

Optimization Options (continued)

INLGLUE - Specified as -q[no]inlglue
Inline calls to "glue" code used in calls through function
pointers (including virtual) and calls to functions which are
dynamically bound
Pointer glue is inlined by default for -qtune=pwr4

TBTABLE
Controls the generation of traceback table information:
-qtbtable=none inhibits generation of tables - no stack
unwinding is possible
-qtbtable=small generates tables which allow stack
unwinding but omit name and parameter information -
useful for optimized C++

This is the default setting when using optimization
-qtbtable=full generates full tables including name and
parameter information - useful for debugging

Target Machine Options

ARCH
Restricts the compiler to generate a subset of the Power
or PowerPC instruction set
Specified as -qarch=isa where isa is one of:

com (default): Code can run on any RS/6000 - implies
-qtune=pwr2
auto: Code may take advantage of instructions
available only on the compiling machine (or similar
machines)
ppc: Code follows PowerPC architecture - implies
-qtune=604 (32 bit) or -qtune=pwr3 (64 bit)
pwr3: Code can run on any Power 3 - implies
-qtune=pwr3
Lots of others: pwr, pwr2, 604, pwr4, ...

Target Machine Options (continued)

TUNE: Bias optimization toward execution on a given
machine

Does not imply anything about the ability to run correctly
on a given machine - only affects performance
-qtune=auto generates code that is automatically tuned
for the compiling machine (or similar machines)
Specified as -qtune=machine where machine is one of
auto, 604, pwr2, p2sc, pwr3, pwr4, rs64c, etc.

CACHE: Defines a specific cache/memory geometry
Defaults are set through TUNE
Specified as -qcache=level=n:cache_spec, where
cache_spec includes:

type=i|d|c: cache type (instruction/data/combined)
line=lsz:size=sz:assoc=as: line/cache size and set
associativity
cost=c: cost (in cpu cycles) of a miss

Mainly useful when using -qhot or -qsmp

Getting the most out of ARCH, TUNE
and CACHE

Try to specify with ARCH the narrowest family of machines possible
that will be expected to run your code correctly.

-qarch=com will generate code that runs anywhere but will have
slower integer divides and multiplies and will be unable to exploit
single precision floating point
-qarch=ppc is better if you don't need to run on Power or Power2
but this will inhibit generation of sqrt or fsel, for example
-qarch=ppcgr is a bit better, since it allows generation of fsel but
still no sqrt
To get sqrt, you will need -qarch=pwr3. This will also generate
correct code for Power 4.

Try to specify with TUNE the machine where performance should be
best.

If you are not sure, try -qtune=pwr3. This will generate code that
should generally run well on most machines.

Before using the CACHE option, have a look at the options sections of
the listing to see if the current settings are satisfactory. If you do
decide to use -qcache, use -qhot along with it.

Target Machine Options (continued)

64/32: Generate code for 64 bit (4/8/8) or 32 bit (4/4/4) addressing
model

Specified as -q32 or -q64
-q64 generates code with different magic numbers on AIX V4 and
AIX V5. If you code needs to run on both, build two executables or
two libraries.

SMP (Fortran, C): Generate threaded code for a shared-memory
parallel machine

Specified as -qsmp[=[no]auto:[no]omp:[no]opt:fine tuning]
auto instructs the compiler to automatically generate parallel code
where possible without user assistance
omp instructs the compiler to observe OpenMP 1.0 language
extensions for specifying explicit parallelism
opt instructs the compiler to optimize as well as parallelize. The
optimization is equivalent to -O2 -qhot by default. The default
setting is -qsmp=opt.
fine tuning includes control over thread scheduling, nested
parallelism and locking

Getting the most out of -qsmp

Test your programs using optimization and preferably using
-qhot in a single-threaded manner before using -qsmp
(where practical).
Always use the "_r" or reentrant compiler invocations when
using -qsmp.
By default, the runtime will use all available processors. Do
not set the PARTHDS or OMP_NUM_THREADS variables
unless you wish to use fewer than the number of available
processors.
If using a machine or node in a dedicated fashion, consider
setting the SPINS and YIELDS environment variables to 0.
When debugging an OpenMP program, try using
-qsmp=noopt (without -O) to make debugging information
produced from the compiler more precise.

Floating Point Options

FLOAT
Precise control over the handling of floating point
calculations
Specified as -qfloat=subopt where subopt is one of:

[no]fold: enable compile time evaluation of floating
point calculations - may want to disable for handling of
certain exceptions (eg. overflow, imprecise)
[no]maf: enable generation of multiple-add type
instructions - may want to disable for exact
compatibility with other machines but this will come at
a high price in performance
[no]rrm: specifies that rounding mode may not be
round-to-nearest (default is norrm)

Floating Point Options (continued)

FLOAT (continued)
[no]hsflt: allow various fast floating point optimizations
including replacement of division by multiplication by a
reciprocal
[no]rsqrt: allow computation of a divide by square root
to be replaced by a multiply of the reciprocal square
root

FLTTRAP
Enables software-only checking of IEEE floating point
exceptions
Usually more efficient than hardware checking since
checks can be executed less frequently
Specified as -qflttrap=imprecise | enable |
ieee_exceptions

Program Behaviour Options

STRICT
Specified as -q[no]strict, default is -qstrict with
-qoptimize=0 and -qoptimize=2, -qnostrict with
-qoptimize=3,4,5
nostrict allows the compiler to reorder floating point
calculations and potentially excepting instructions

ALIAS (Fortran)
Specified as -qalias=[no]std:[no]aryovrlp:others
Allows the compiler to assume that certain variables do not
refer to overlapping storage
std (default) refers to the rule about storage association of
reference parameters with each other and globals
aryovrlp (default) defines whether there are any
assignments between storage-associated arrays - try
-qalias=noaryovrlp for better performance

Program Behaviour Options
(continued)

ALIAS (C, C++)
Similar to Fortran option of the same name but focussed
on overlap of storage accessed using pointers
Specified as -qalias=subopt where subopt is one of:

[no]ansi: Enable ANSI standard type-based alias rules
[no]typeptr: Assume pointers to different types never
point to the same or overlapping storage
[no]allptrs: Assume that different pointer variables
always point to non-overlapping storage
[no]addrtaken: Assume that external variables do not
have their address taken outside the source file being
compiled

Why the big fuss about aliasing?

The precision of compiler analyses is gated in large part by
the apparent effects of direct or indirect memory writes and
the apparent presence of direct or indirect memory reads.
Memory can be referenced directly through a named symbol,
indirectly through a pointer or reference parameter, or
indirectly through a function call.
Many apparent references to memory are false and these
constitute barriers to compiler analysis.
The compiler does analysis of possible aliases at all
optimization levels but analysis of these apparent references
is best when using -qipa since it can see through most calls.
Options such as -qalias and directives such as disjoint,
isolated_call, CNCALL and INDEPENDENT can have
pervasive effect since they fundamentally improve the
precision of compiler analysis.

Program Behaviour Options
(continued)

ASSERT (Fortran, C)
Specified as -qassert=[no]deps | itercnt= n
deps (default) indicates that some loop has a loop carried
memory dependence - try -qassert=nodeps for improved
performance
itercnt modifies the default assumptions about the expected
iteration count of loops (normally 10)

INTSIZE (Fortran): Define the default size of INTEGER variables
Specified as -qintsize=1|2|4|8
When using -q64, try -qintsize=8 for improved performance

IGNERRNO (C,C++) - Specified as -q[no]ignerrno
Indicates that the value of errno is not needed by the program
Can help in optimization of math functions.
This is the default with -O3.

Program Behaviour Options
(continued)

DATA/PROC LOCAL/IMPORTED - Specifies expected
access to external variables and functions:

-qdatalocal[=vars]: Specifies that the definitions of all or
just the named variables will be statically bound - access
to statically bound variables is faster
-qdataimported[=vars]: Specifies that the definitions of all
or just the named variables might be dynamically bound
-qproclocal[=funcs]: Specifies that the definitions of all or
just the named functions will be statically bound - calls to
statically bound functions are faster than dynamic or
unknown
-qprocimported[=funcs]: Specifies that the definitions of
all or just the named functions will be dynamically bound
-qprocunknown[=funcs]: Specifies that the definitions of
all or just the named functions have unknown linkage

Program Behaviour Options
(continued)

LIBANSI (C, C++) - Specified as -q[no]libansi
Specifies that calls to ANSI standard functions will be
bound with conforming implementations
This is the default with -qipa.

MA (C, C++) - Specified as -qma
Directs the compiler to generate inline code for calls to the
alloca function.

PROTO (C) - Specified as -q[no]proto
Asserts that procedure call points agree with their
declarations even if the procedure has not been
prototyped.
Useful for well behaved K&R C code.

RO,ROCONST (C,C++) - Specified as -q[no]ro{const}
Directs the compiler to place string literals (RO) or
constant values (ROCONST) in read-only storage

Diagnostic Options

LIST
Specified as -qlist
Instructs the compiler to emit an object listing
The object listing includes hex and pseudo-assembly
representations of the generated code along with
traceback tables and text constants

REPORT (Fortran)
Specified as -qreport [=smplist]
Instructs the high level optimizer to emit a report including
pseudo-Fortran along with annotations describing what
transformations were performed (eg. loop unrolling,
automatic parallelization)
Also includes information about data dependences and
other inhibitors to optimization

Diagnostic Options (continued)

INITAUTO
Directs the compiler to emit code that initializes all
automatic (stack) variables to a given value
-qinitauto=XX initializes bytes with the value given in hex
-qinitauto=XXXXXXXX initializes words with the value
given in hex

Directives and Pragmas

OpenMP 1.0 - supported in C and Fortran
Legacy SMP directives and pragmas

Most of these are superceded by OpenMP - use OpenMP where
possible

Assertive directives (Fortran)
ASSERT, INDEPENDENT, CNCALL, PERMUTATION

Assertive pragmas (C)
isolated_call, disjoint, independent_loop, independent_calls,
iterations, permutation, execution_frequency, leaves

Embedded Options
#pragma options and #pragma option_override in C
@PROCESS in Fortran

Prescriptive directives (Fortran)
PREFETCH, UNROLL

Prescriptive pragmas (C)
sequential_loop

Assertive Directives (Fortran)

ASSERT (ITERCNT(n) | [NO]DEPS)
Same as options of the same name but applicable to a
single loop - much more useful

INDEPENDENT: Asserts that the following loop has no loop
carried dependences - enables locality and parallel
transformations
CNCALL: Asserts that the calls in the following loop do not
cause loop carried dependences
PERMUTATION (names)

Asserts that elements of the named arrays take on distinct
values on each iteration of the following loop - may be
useful in sparse codes

Assertive Pragmas (C)

isolated_call (function_list) asserts that calls to the named
functions do not have side effects
disjoint (variable_list) asserts that none of the named
variables share overlapping areas of storage
independent_loop is equivalent to INDEPENDENT
independent_calls is equivalent to CNCALL
permutation is equivalent to PERMUTATION
iterations is equivalent to ASSERT(ITERCNT)
execution_frequency (very_low) asserts that the control path
containing the pragma will be infrequently executed
leaves (function_list) asserts that calls to the named
functions will not return (eg. exit)

Prescriptive Directives (Fortran)

PREFETCH
PREFETCH_BY_LOAD (variable_list): issue dummy
loads to cause the given variables to be prefetched into
cache - useful on Power machines or to activate Power 3
hardware prefetch
PREFETCH_FOR_LOAD (variable_list): issue a dcbt
instruction for each of the given variables.
PREFETCH_FOR_STORE (variable_list): issue a dcbtst
instruction for each of the given variables.

UNROLL
Specified as [NO]UNROLL [(n)]
Used to activate/deactivate compiler unrolling for the
following loop.
Can be used to give a specific unroll factor.

Prescriptive Pragmas (C)

sequential_loop directs the compiler to execute the
following loop in a single thread, even if the
-qsmp=auto option is specified

Compiler Friendly Programming

Compiler-friendly programming idioms can be as useful to
performance as any of the options or directives
Do not excessively hand-optimize your code (eg. unrolling,
inlining) - this often confuses the compiler (and other
programmers!) and makes it difficult to optimize for new
machines
Avoid unnecessary use of globals and pointers - when using
them in a loop, load them into a local before the loop and
store them back after.
Avoid breaking your program into too many small functions. If
you must use small functions, seriously consider using -qipa.
Use register-sized integers (long in C/C++ and INTEGER*4
or INTEGER*8 in Fortran) for scalars. For large arrays of
integers, consider using 1 or 2 byte integers or bitfields in C
or C++.

Compiler Friendly Programming
(continued)

Use the smallest floating point precision appropriate to your
computation. Use 'long double', 'REAL*16' or
'COMPLEX*32' only when extremely high precision is
required.
Obey all language aliasing rules (try to avoid -qassert=nostd
in Fortran and -qalias=noansi in C/C++)
Use locals wherever possible for loop index variables and
bounds. In C/C++, avoid taking the address of loop indices
and bounds.
Keep array index expressions as simple as possible. Where
indexing needs to be indirect, consider using the
PERMUTATION directive.
Consider using the highly tuned MASS and ESSL libraries
rather than custom implementations or generic libraries

Fortran programming tips

Use the '[mp]xlf90[_r]' or '[mp]xlf95[_r]' driver invocations
where possible to ensure portability. If this is not possible,
consider using the -qnosave option.
When writing new code, use module variables rather than
common blocks for global storage.
Use modules to group related subroutines and functions.
Use INTENT to describe usage of parameters.
Limit the use of ALLOCATABLE arrays and POINTER
variables to situations which demand dynamic allocation.
Use CONTAINS only to share thread local storage.
Avoid the use of -qalias=nostd by obeying Fortran alias rules.
When using array assignment or WHERE statements, pay
close attention to the generated code with -qlist or -qreport.
If performance is inadequate, consider using -qhot or
rewriting array language in loop form.

C/C++ Programming Tips

Use the xlc[_r] invocation rather than cc[_r] when possible.
Always include string.h when doing string operations and
math.h when using the math library.
Pass large class/struct parameters by address or reference,
pass everything else by value where possible.
Use unions and pointer type-casting only when necessary
and try to follow ANSI type rules.
If a class or struct contains a 'double', consider putting it first
in the declaration. If this is not possible, consider using
-qalign=natural
Avoid virtual functions and virtual inheritance unless required
for class extensibility. These are costly in object space and
function invocation performance.
Use 'volatile' only for truly shared variables.
Use 'const' for globals, parameters and functions whenever
possible.
Do limited hand-tuning of small functions by defining them as
'inline' in a header file.

Inside a Compilation Step

C++ Front
End

(xlCentry)

Optimizer
(ipa)

C Front End
(xlcentry)

Code Generator
(xlCcode/xlfcode)

C source (foo.c) C++ source (foo.C)

Fortran
Front End
(xlfentry)

Object Code (foo.o)

Scalarizer
(xlfhot)

Fortran source (foo.f)

All information subject to change without notice

Shortcut path
for optimize < 4

Inside an Link-time Compilation

Whole
Program

Optimizer
Other Link
Information

Code
Generator

Wcode partitions

Object Files

Linker

Object files Libraries

Executable or shared library

All information subject to change without notice

Inside the Code Generator

Wcode-to-XIL
Translator

Wcode

Early
Optimization

Late
Optimization

Instruction
Scheduling and

Register
Allocation

Early
Macro

Expansion

Simple
Optimization

Late Macro
Expansion

Fast
Register

Allocation

Final
Assembly

-O2noopt

-O2

-O2

noopt

nopt

Value Numbering
Redundancy Elimination
Reassociation
Dead Store Elimination

Value Numbering
Commoning/Code Motion
Dead Code Elimination

Local Commoning
Control Flow
 Straightening

Aggressive
Optimization

Aggressive
Optimization

Loop Unrolling

Modulo Scheduling
Global Scheduling
Code Layout

Inside the Optimizer Compile Pass

Decode

Optimize

Collect

Encode

Wcode from
FE

Wcode to
BE

Wcode + partial call
graph/sym table to link
pass

Control flow
Data flow (SSA)
Loop optimization

All information subject to change without notice

Loop Optimization

Scalar
Optimization

Loop Nest
Canonization

High Level
Transformations

Parallel Loop
Outlining

Low Level
Transformations

Parallel
Loops

Serial
Loops

Control Flow Optimization
Data Flow Optimization
Loop Normalization

Aggressive Copy Propagation
Maximal Loop Fusion

Loop Nest Partitioning
Loop Interchange
Loop Unroll and Jam
Loop Parallelization

Inner Loop Unrolling
Loop Vectorization
Strength Reduction
Redundancy Elimination
Code Motion

All information subject to change without notice

OpenMP Example

SUBROUTINE SUB(ARR, N, R)
INTEGER N, R
INTEGER ARR(N)

!$OMP PARALLEL DO
REDUCTION(+:R)
DO I=1,N
 ARR(I)=FOO(I,N)
 R=R+BAR(I)
ENDDO
END SUBROUTINE SUB

OpenMP Implementation Example

SUBROUTINE SUB(ARR, N,
R)
INTEGER N, R
INTEGER ARR(N)

CALL _xlsmpParDoSetup
(&SUB@OL@1, 1, N)

END SUBROUTINE SUB

SUBROUTINE SUB@OL@1(FROM, TO)
 INTEGER FROM, TO, I, R1
 R1 = 0
 DO I=FROM, TO
 ARR(I)=FOO(I,N)
 R1=R1+BAR(N)
 ENDDO
 CALL _xlsmpGetLock()
 R=R+R1
 CALL _xlsmpRelLock()
END SUBROUTINE SUB@OL@1

SMPRT

Thread management
Data management
Task scheduling
Synchronization

XLSMPOPTS

Same
mechanism

used for
automatic
parallelism

All information subject to
change without notice

OpenMP Example: XL Fortran V7.1.1
Version

SUBROUTINE SUB(ARR, N, R)
INTEGER N, R
INTEGER ARR(N),RV(32,*)

ALLOCATE (RV(NUM_THREADS))
RV(1,:) = 0
CALL _xlsmpParDoSetup
(&SUB@OL@1, 1, N)
R = SUM(RV(1,:))
DEALLOCATE (RV)

END SUBROUTINE SUB

SMPRT

Thread management
Data management
Task scheduling
Synchronization

XLSMPOPTS

SUBROUTINE SUB@OL@1(FROM, TO)
 INTEGER FROM, TO, I, R1
 R1 = RV(1,THREAD_NUM)
 DO I=FROM, TO
 ARR(I)=FOO(I,N)
 R1=R1+BAR(N)
 ENDDO
 RV(1,THREAD_NUM) = R1
END SUBROUTINE SUB@OL@1

All information subject to
change without notice

Inside Optimizer Link Pass

Symbol
Resolution

Call Graph
Completion

Backward
Alias

Analysis

Inlining

Data
Coalescing

Function
Partitioning

Forward
Data-flow
Analysis

Backward
Data-flow
Analysis

Alias
Closure

parameter & global
def/use
backward properties

copy and constant
propagation
pointer alias analysis
dead code elimination

closure of context
sensitive
pointer alias relationships

invariant code motion
common subexpression
elimination

-qipa=level=2

-qipa=level=1

-qipa=level=0

Review of Power4 Architecture

PowerPC 64 bit ISA
Nominal clock frequency 1.3MHz
2 FXUs, 2 FPUs, 2 LSUs, 1 BRU, 1 CRLU per
core
64K direct I-L1, 32K 2w FIFO D-L1 per core
2 cores per chip
Shared 3x480K 8w PLRU L2 per chip
Four chips and 4x32MB L3 per module
8-32 way configurations

Some interesting Power4 facts

8 instruction fetch buffer
3 cycle pipeline for cracking/preprocessing
4w or 5w (with branch) dispatch with some restrictions
Out-of-order execution, in-order issue and completion
20 entry completion buffer, 1 entry per dispatch group
Renames: 80 GPR, 72 FPR, 24 XER (CA/OV), 16 LR/CTR, 32 CR, 20
FPSCR
2x18 entry FXU/LSU, 2x10 entry FPU instruction queues
Asymmetric FXUs: one does divide, the other SPR ops
2x6 stage LSUs: 2 cycle load-use penalty for FXU, 3 cycle for FPU
8 entry outstanding load miss queue
8 independent data prefetch streams, tracking up or down
2x9 stage FPUs: symmetric, 6 stage execution
1K 4w unified TLB supporting 4K and 16M page sizes

Power 4 Optimization Technology

Architecture-neutral and -specific code paths
tuning for arch=ppc and arch=pwr4

Precise machine model for scheduling (-O2+)
new instruction scheduler with more detailed modelling
capability
tuned through extensive experimention on early h/w

New loop transformations for deep pipelines (-O3+)
more precise loop unrolling and pipelining

New aggressive branch optimizations (-O2+)
branch pattern replacement
utilization of branch hints (eg. using profile feedback)

Optimized usage of hardware-expanded instructions
eg. load/store update, mtcr, lm/stm

Optimized prefetch buffer allocation (-qhot)
utilization of prefetch stream start instructions
loop nest fusion and partitioning to optimize # streams

All information subject to change without notice

SPEC results for Power4

SPECint base

SPECint

SPECfp base

SPECfp

0 200 400 600 800 1000 1200 1400

SPEC Ratio

Pentium 4 2.0 GHz
Alpha 1.0 GHz
Sparc 3 900 MHz
R14000 500 MHz
Itanium 800 MHz
PA8700 750 MHz
Power 4 1.3 GHz

783

808

1098

1169

Competitive data from www.spec.org

Questions?

?

